

100% ΔVds TESTED!

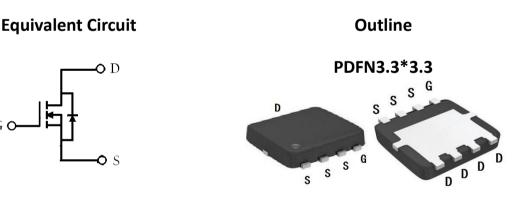
100% UIS TESTED!

Features

- Super Low Gate Charge
- Green Device Available
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

BV _{DSS}	10	V	
I _D @V _{GS} =10V,T _C =25°C	50		А
R _{DSON} ,Tc=25°C	Тур	Max	Unit
@V _{GS} =10V,I _D =20A	12	14	mΩ

Description


The PSMN040-100MSE-CN is the high cell density trenched

N-ch MOSFETs, which provide excellent $R_{\mbox{\tiny DSON}}$

and gate charge for most of the synchronous

buck converter applications. The PSMN040-100MSE-CN meet the RoHS and Green Product

requirement with full function reliability approved.

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
CT14RN10H	PSMN040-100MSE -CN	PDFN3.3x3.3	-	-	

Table 1. Thermal Characteristic

Symbol	Parameter	Max	Unit	
Rejc	Thermal Resistance Junction-Case ¹	4.5	°C/W	

ChipNobo Co., Ltd

N-Channel Fast Switching Power MOSFET

Table 2. Absolute Maximum Ratings (TA=25℃)

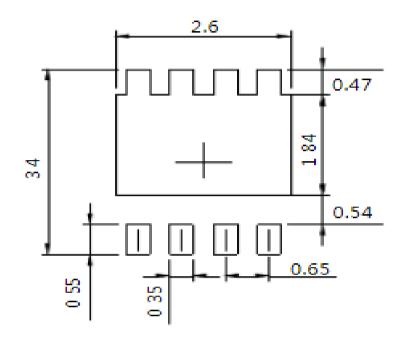
Symbol	Parameter	Value	Unit
Vds	Drain-Source Voltage (VGS=0V)	100	V
Vgs	Gate-Source Voltage (VDs=0V)	±20	V
1	Drain Current-Continuous(Tc =25°C) ¹	50	А
D (DC)	Drain Current-Continuous(Tc =100°C) ¹	32	٨
DM (pluse)	I _{DM (pluse)} Drain Current-Continuous@ Current-Pulsed ²		A
PD	Maximum Power Dissipation(Tc=25°C) ⁴	33	W
TJ,TSTG	Operating Junction and Storage Temperature Range	-55 To 150	°C

Table 3. Electrical Characteristics (TA=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off Stat	tes					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V I _D =250µA	100			V
la an	Zero Gate Voltage Drain Current(Tc=25°C)	V _{DS} =80V,V _{GS} =0V			1	μA
IDSS	Zero Gate Voltage Drain Current(Tc=55°C)	V _{DS} =80V,V _{GS} =0V			5	μA
I _{GSS}	Gate-Body Leakage Current	$V_{GS}=\pm 20V, V_{DS}=0V$			±100	nA
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$	2	3	4	V
Rds(on)	Drain-Source On-State Resistance ²	V _{GS} =10V, I _D =20A		12	14	mΩ
Dynamic C	haracteristics			•	•	
Ciss	Input Capacitance			1444		PF
Coss	Output Capacitance	V _{DS} =50V,V _{GS} =0V f=1.0MHz		390		PF
C _{rss}	Reverse Transfer Capacitance	1 - 1.000112		15		PF
Switching	Times					
t _{d(on)}	Turn-on Delay Time			7		nS
tr	Turn-on Rise Time	$V_{DS}=50V, V_{GS}=10V,$		26		nS
t _{d(off)}	Turn-Off Delay Time	- I _D =20A, R _G =10Ω		30		nS
t _f	Turn-Off Fall Time			12		nS
Qg	Total Gate Charge [4.5V]	V _{DS} =50V, V _{GS} =10V,		22		nC
Q _{gs}	Gate-Source Charge	I _D =20A		5		nC
Q_gd	Gate-Drain Charge			4		nC
Source-Dra	ain Diode Characteristics			•		
Isd	Source-Drain Current(Body Diode) ^{1.5}				50	А
Vsd	Forward On Voltage ²	I _{SD} =20A,V _{GS} =0V TJ =25℃			1.2	V
t _{on}	Forward Turn-on Time	Intrinsic turn-on time	is neglig	ible(turn-	on is dor	ninated

Notes: 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

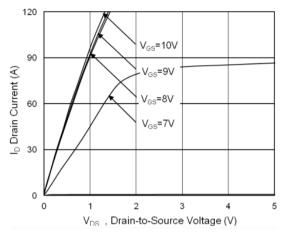
2.The data tested by pulsed , pulse width ${\leq}\,300\text{us}$, duty cycle ${\leq}\,2\%$

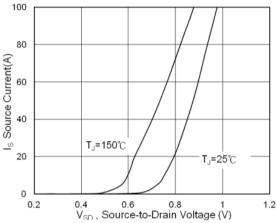

3.The EAS data shows Max. rating . The test condition is V_{DD} =50V,V_{\text{GS}} =10V,L=0.1mH

4. The power dissipation is limited by 175℃ junction temperature

5. The data is theoretically the same as I_D and I_{DM} , in real applications , should be limited by total power dissipation.

Recommended soldering footprint


unit : mm



N-Channel Fast Switching Power MOSFET

Typical Characteristics

Figure1: Output Characteristics

Figure 3: Forward Characteristics of Reverse Diode

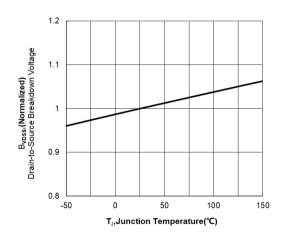


Figure 5: Normalized BVdss vs. Tj

Figure 2: On-Resistance vs. G-S Voltage

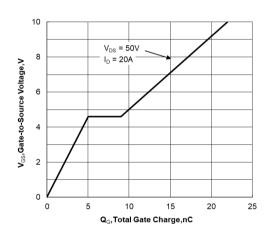


Figure 4: Gate-Charge Characteristics

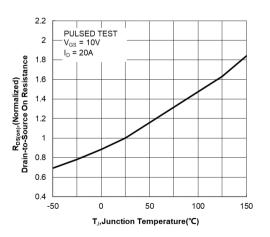


Figure 6: Normalized RDSON vs. TJ

PSMN040-100MSE-CN

N-Channel Fast Switching Power MOSFET

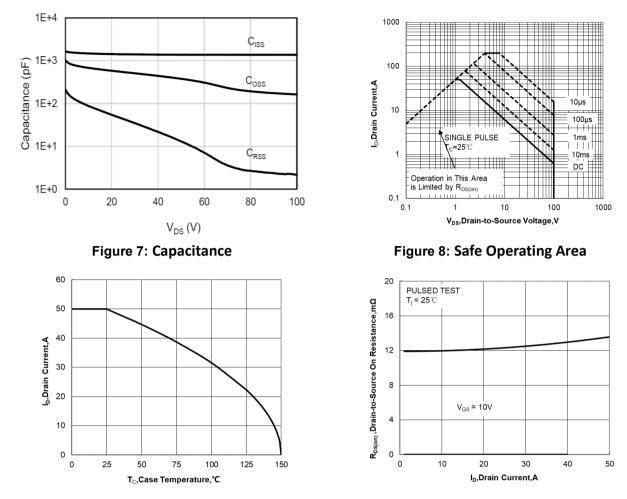
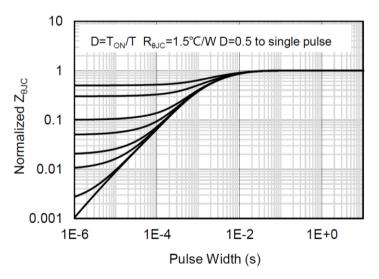
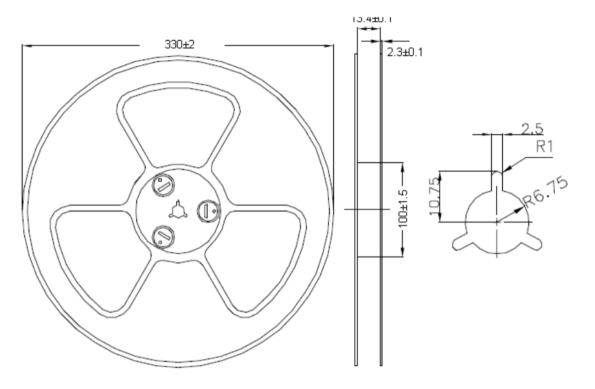
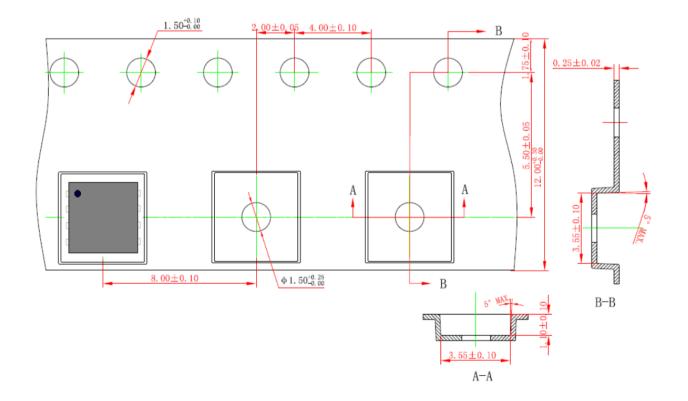


Figure 9: Drain Current

Figure 10: Normalized R_{DSON} vs. Drain Current & Gate Voltage



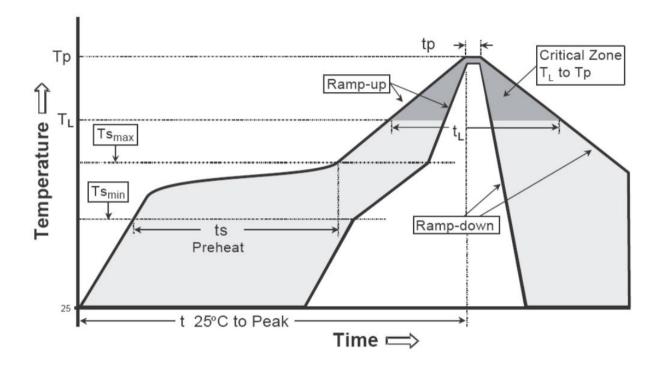

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case


PSMN040-100MSE-CN

N-Channel Fast Switching Power MOSFET

Reel Dimension

Carrier Tape Dimension



Recommended wave soldering condition

Product	Peak Temperature	Soldering Time
Pb-free devices	260 +0/-5 °C	5 +1/-1 seconds

Recommended temperature profile for IR reflow

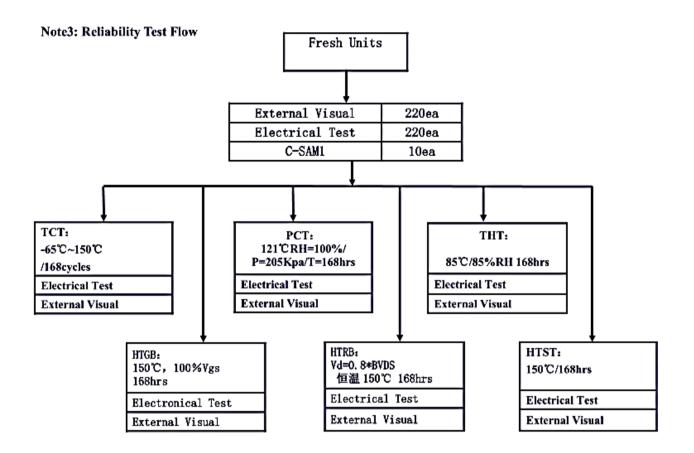
Profile feature	Sn-Pb eutectic Assembly	Pb-free Assembly
Average ramp-up rate (Tsmax to Tp)	3°C/second max.	3°C/second max.
Preheat		
-Temperature Min(Ts min)	100°C	150°C
-Temperature Max(Ts max)	150°C	200°C
-Time(ts min to ts max)	60-120 seconds	60-180 seconds
Time maintained above:		
–Temperature (TL)	183°C	217°C
– Time (t∟)	60-150 seconds	60-150 seconds
Peak Temperature(T _P)	240 +0/-5 °C	260 +0/-5 °C
Time within 5°C of actual peak temperature(tp)	10-30 seconds	20-40 seconds
Ramp down rate	6°C/second max.	6°C/second max.
Time 25 °C to peak temperature	6 minutes max.	8 minutes max.

Note : All temperatures refer to topside of the package, measured on the package body surface.

N-Channel Fast Switching Power MOSFET

Reliability Test item & result

		Test Result						
Test Item*	Oualification Test Condition	E	VI	SA	M*	F/T		conclus
Test tielli	Quantearion rest contaiton	Sample size	Rej / S.S	Sample size	Rej / S.S	Sample size	Rej / S.S	ion
Before Test	1	220	0/220	10	0/10	220	0/220	PASS
тст	-65°C~+150°C, 168cycles	25	0/25	-		25	0/25	PASS
РСТ	1 2 1°C, 100%RH, 205Kpa, 168hrs	25	0/25			25	0/25	PASS
THT	85°C/85%RH, 168hrs	25	0/25			25	0/25	PASS
HTS	150°C,168hrs	25	0/25	N/A		25	0/25	PASS
HTRB	Vd=0.8*BVDSS,恒温 150℃ <u>168</u> hrs	60	0/60			60	0/60	PASS
HTGB	150°C, 100%Vgs <u>168</u> hrs	60	0/60			60	0/60	PASS


Note1: Test Items*

	试验项目 Test Item	参考标准 Reference Standard	
TCT	Temperature Cycle Test	温度循环试验	JESD22-A104
PCT	Pressure Cooker Test	高压蒸煮试验	JESD22-A102
THT	Temperature & Humidity Test	恒温恒湿试验	JESD22-A101
HTS	High Temperature Storage Test	高温储存试验	JESD22-A103
HTRB	High Temperature Reverse Bias Test	高温反偏试验	JESD22-A108
HTGB	High Temperature Gate Bias Test	高温栅偏试验	JESD22-A108

Note2: SAM*

SAM data	Samula	DLMN. (MIN-MAX%)					
	Sample Size		Die	Topside-pad		Topside -lead	
Test item.	5126	S.S	%	S.S	%	S.S	%
Before test	10	0	0	0	0	0	0

Reliability Evaluation

FIT rate (per billion) : 237.2(FITS)

MTTF= 481 years

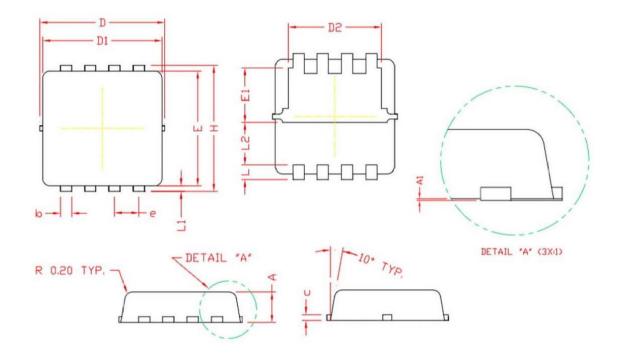
Failure Rate in FIT is calculated according to JEDEC Standard JESD85, Methods for Calculating Failure Rates in Units of FITs, based on accelerated High temperature operating life test results by using an apparent activation energy of 0.7eV. The junction temperature of the device at use is assumed to be 70°C. A constant failure rate is The upper confidence bound of the failure rate is 60%.

Failure Rate = Chi² x 10⁹ / [2(N)(H)(Af)]=1.833X109 /[2x44x1000x87.8]=237.2 MTTF= 109 / FIT=4215851hrs=481years

Chi²= Chi Squared Distribution , determine by the number of failure and confidence interval N= Total Number of units from HTRB and HTGB tests H= Duration of HTRB/HTGB testing Af=Acceleration Factor from Test to Use Conditions (Ea=0.7 eV and T Use =70°C) Acceleration Factor[Af]=EXP [Ea/k(1/Tju-1/Tjs)]

Acceleration Factor ratio list:

	55°C	70°C	85°C	100°C	115°C	130°C	150°C
Af	259	87.8	32.6	13.1	5.65	2.59	1


Tjs=Stress junction temperature in degree (Kelvin) , K= $^{\circ}C+273$ Tju=The use junction in degree (Kelvin) , K= $^{\circ}C+273$ K=Boltzmann's constant,8.617164x10⁻⁵ eV/K

Environmental & Package Stress Test

Test Item	Test Condition	Time Point	Total Sample size	Number of Failures
High Temperature	Max. Storage Temp=150°C,	168/500/1000	44 pcs	0
Storage Test(HTST)	No bias	hrs		
HighTemperature&	Temp=85°C,	168/500/1000	22 pcs	0
Humidity Reverse	Relative Humidity: 85%R.H.	hrs		
bias (H3TRB)	VDS=80% BVDSS Rating			
Temperature	Temp=85°C,	168/500/1000	44 pcs	0
Humidity Storage	Relative Humidity: 85%R.H.	hrs		
Test (THST)	No bias			
Power Cycle Test (PRCL)	∆Tj=90°C,	1K/5K/10K cycles	22 pcs	0
Temperature Cycling Test (TCT)	-65°C,~150°C, Δ T=215°C,	1K cycles	44 pcs	0
Pressure Cooker Test (PCT)	Temp=121°C, Relative Humidity: 100 %R.H. Pressure:2atm	168 hrs	44 pcs	0

PDFN3.3*3.3 Package Information

(UNITS OF MEASURE=MILLIMETER) SYMBOL MIN NOM MAX 0.70 A 0.80 0.90 A1 0.00 0.03 0.05 0.24 0.30 0.35 b 0.10 0.15 0.20 c D 3.25 3.32 3.40 D1 3.25 3.05 3.15 D2 2.40 2.50 2.60 E 3.00 3.10 3.20 E1 1.35 1.45 1.55 0.65 BSC. е H 3.20 3.30 3.40 L 0.30 0.50 0.40 0.10 0.20 L1 0.15 L2 1.13 REF.

COMMON DIMENSIONS

PSMN040-100MSE-CN

N-Channel Fast Switching Power MOSFET

NOTICE

The information presented in this document is for reference only. Involving product optimization and productivity improvement, ChipNobo reserves the right to adjust product indicators and upgrade some technical parameters. ChipNobo is entitled to be exempted from liability for any delay or non-delivery of the information disclosure process that occurs.

本文件中提供的信息仅供参考。涉及产品优化和生产效率改善,ChipNobo 有权调整产品指标和部分技术参数的升级,所出现信息披露过程存在延后或 者不能送达的情形,ChipNobo 有获免责权。

The product listed herein is designed to be used with residential and commercial equipment, and do not support sensitive items and specialized equipment in areas where sanctions do exist. ChipNobo Co., Ltd or anyone on its behalf, assumes no responsibility or liability for any damages resulting from improper use.

此处列出的产品旨在民用和商业设备上使用,不支持确有制裁地区的敏感项目和特殊设备,ChipNobo有限公司或其代表,对因不当使用而造成的任何 损害不承担任何责任。

For additional information, please visit our website http://www.chipnobo.com, or consult your nearest Chipnobo sales office for further assistance.

欲了解更多信息,请访问我们的网站 http://www.chipnobo.com,或咨询离您最近的 Chipnobo 销售办事处以获得进一步帮助。