

1. FEATURES

- Easy to use
 - Gain set with one external resistor (Gain range 1 to 10,000)
 - Wide power supply range (± 2 V to ± 19 V)
 - Higher performance than 3 op amp IA designs
 - Available in 8-lead SOIC packaging
 - Low power, 1.57mA quiescent current
- Excellent dc performance
 - 13 μV max, input offset voltage
 - 3.1 nA max, input bias current
 - 100 dB min common-mode rejection ratio (G = 10)
- Low noise
 - 14nV/√Hz @ 1 kHz, input voltage noise
- 3 μV pp noise (0.1 Hz to 10 Hz)
- Excellent ac specifications
 - 1300 kHz bandwidth (G = 1)
 - 75 μs settling time to 0.01%
- Operating temperature:-55°C to 125°C

2. APPLICATIONS

- Weigh scales
- ECG and medical instrumentation
- Transducer interface
- Data acquisition systems
- Industrial process controls
- Battery-powered and portable equipment

3. PRODUCT DESCRIPTION

The AD620SQ-CN/883B is a low cost high accuracy instrumentation amplifier that requires only one external resistor to set gains of 1 to 10,000. Furthermore, the AD620SQ-CN/883B features 8-lead SOIC packaging that offers low standby power consumption(only1.57 mA), making it a good fit for batterypowered, portable(or remote) applications.

The AD620SQ-CN/883B is a high accuracy instrumentation amplifier with a low nonlinearity of only 0.8ppm low offset voltage of 13 μ V max, is ideal for use in precision data acquisition systems, such as weigh scales and transducer interfaces. Furthermore, the low noise, low input bias currentand low power of the AD620SQ-CN/883B make it well suited for medical applications, such as ECG and noninvasive blood pressure monitors.

The AD620SQ-CN/883B works well as a preamplifier due to its low input voltage noise of 14 nV/ $\sqrt{\text{Hz}}$ at 1 kHz, 3 μ Vpp in the 0.1 Hz to 10 Hz band, and 0.35 pA/ $\sqrt{\text{Hz}}$ input current noise. Also, the AD620SQ-CN/883B is well suited for multiplexed applications with its settling time of 75 μ s to 0.01%, and its cost is low enough toenable designs with one in-amp per channel.

High Performance, Low Power Instrumentation Amplifier

4. CONNECTION DIAGRAM

Figure 1 shows the pin configuration

Figure 1. Pin Configuration

Table 1. Pin Function

Position	Name	Туре	Description
1, 8	R_{G}	Analog output	Connect a resistor between two $R_{\rm G}$ to set gain. See more information in the GAIN SELECTION section.
2	–IN	Analog input	Signal negative input
3	+IN	Analog input	Signal positive input
4	–Vs	Power supply	Negative power supply
5	REF	Analog input	Output reference voltage input
6	OUTPUT	Analog output	Output
7	+V _S	Power supply	Positive power supply

5. PRODUCT SPECIFICATION

Table 2. Absolute Maximum Ratings

Parameter	Description	Min	Мах	Units
Voltage	Supply		±20	V
	Input voltage	$-V_{S} - 0.3$	+V _S + 0.3	V
Internal Power Diss	ipation ⁽²⁾		650	mW
Output Short-Circui	t Duration	Inde		
	Operating, T _A	-55	125	
Temperature	Storage, T _{stg,} Q	-65	150	°C
	Soldering, 10s		300	

Note 1: Stresses beyond those listed under **Table 3** may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under **Table 5**. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Note 2: Specification is for device in free air—8-lead plastic package: $\theta_{JA} = 95^{\circ}$ C.

Table 3. ESD Performance

Parameter	Symbol	Description		Units
Electrostatic Discharge		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ , all pins except –IN and +IN		
	V _(ESD)	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ , –IN and +IN pin	±3500	V
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±2000	

Note 1: JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

Note 2: JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

Table 4. Recommended Working Conditions

Parameter Description		Min	Nom	Мах	Units
	Split supply	±2	±18	±19	V
Operating voltage Range	Single supply	4	36	38	V
Specified Temperature Range	-55		125	°C	

Table 5. Thermal Resistance Characteristics

Parameter	Symbol	SOIC-8	Units
Junction-to-Ambient Thermal Resistance	R _{0JA}	90.6	°C/W
Junction-to-Board Thermal Resistance	R _{ejB}	47.6	°C/W
Junction-to-Top Characterization Parameter	τιΨ	3.6	°C/W
Junction-to-Board Characterization Parameter	Ψ _{ЈВ}	47	°C/W
Junction-to-Case (Top) Thermal Resistance	R _{eJC(top)}	35	°C/W
Junction-to-Case (Bottom) Thermal Resistance	R _{0JC(bot)}	50.8	°C/W

Table 6. Electrical Characteristics

Typical at 25° C,Vs= ± 18 V,and RL= 2k to GND,unless otherwise noted.

Parameter Conditions		Min	Тур	Max	Units		
Gain							
Gain Range	G = 1 + (49.4kΩ / R _G)	1		10K			
	V _{OUT} = ±10V, G = 16		0.02	0.04	%		
	V _{OUT} = ±10V, G = 10		0.03	0.08	%		
Gain Error"	V _{OUT} = ±10V, G = 100		0.03	0.08	%		
	V _{OUT} = ±10V, G = 1000		0.03	0.15	%		
	V_{OUT} = -10V to +10V, G = 1-10, R _L = 10k Ω		1		ppm		
Nonlinearity	$V_{OUT} = -10V$ to +10V, G = 10-100, R _L = 10kΩ		10		ppm		
	$V_{OUT} = -10V$ to +10V, G = 100-1000, R _L = 10kΩ		50		ppm		
Colorus Terresture	G = 1		1	2.5	ppm/°C		
Gain vs. Temperature	Gain > 1 ⁽¹⁾		3	26	ppm/°C		
Voltage Offset ⁽²⁾							
Input Offset, V _{OSI}	V _S = ±18V	±3.5		±13	μV		
	V _S = ±18V		±35	±240	μV		
Output Offset, V _{OSO}	$V_{\rm S}$ = ±2V to ±19V, overtemperature			±420	μV		
	$V_{S} = \pm 2V$ to $\pm 19V$, average TC		0.05		μV/°C		
	$V_{\rm S}$ = ±2V to ±20V, G = 1	108	133		dB		
	V_S = ±2V to ±20V, G = 1, overtemperature	105			dB		
	$V_{\rm S}$ = ±2V to ±20V, G = 10	125	140		dB		
	V_S = ±2V to ±20V, G = 10, overtemperature	125			dB		
Offset Referred to The Input vs.	$V_{\rm S}$ = ±2V to ±20V, G = 100	130	144		dB		
	$V_S = \pm 2V$ to $\pm 20V$, G = 100, overtemperature	130			dB		
	$V_{\rm S}$ = ±2V to ±20V, G = 1000	130	146		dB		
	$V_S = \pm 2V$ to $\pm 20V$, G = 1000, overtemperature	130			dB		
Input Current							
Input Pige Current			1	3	nA		
	Overtemperature			10	nA		
Input Offect Current			0.6	2.2	nA		
mput Onset Current	Overtemperature			4.0	nA		

Parameter Conditions			Тур	Мах	Units		
Input							
	Differential		34 5		GΩ_pF		
Input Impedance	Common-Mode		34 6		GΩ_pF		
Input Voltage Range ⁽³⁾	$V_{\rm S}$ = ±2V to ±19V	−V _s + 0.1		+V _s – 2	V		
Common-Mode Rejection		1	1				
	$V_{CM} = (-V_{S} + 0.1V)$ to $(+V_{S} - 2V)$, G = 1	97	114		dB		
	V_{CM} = (-V _S + 0.1V) to (+V _S - 2V), G = 1, overtemp	90			dB		
	V_{CM} = (-V _S + 0.1V) to (+V _S - 2V), G = 10	110	170		dB		
Common-Mode Rejection Ratio	V_{CM} = (-V _S + 0.1V) to (+V _S - 2V), G = 10, overtemp	107			dB		
Imbalance	$V_{CM} = (-V_{S} + 0.1V)$ to $(+V_{S} - 2V)$, G = 100	129	159		dB		
	V_{CM} = (-V _S + 0.1V) to (+V _S - 2V), G = 100, overtemp	128			dB		
	$V_{CM} = (-V_{S} + 0.1V)$ to $(+V_{S} - 2V)$, G = 1000	145	182		dB		
	V_{CM} = (-V _S + 0.1V) to (+V _S - 2V), G = 1000, overtemp	142			dB		
Output							
Output Swing	$R_L = 10k\Omega$, $V_S = \pm 2V$ to $\pm 19V$, overtemperature	-V _s + 0.2	-V _s + 0.2		V		
Short Circuit Current	Overtemperature		±23		mA		
Dynamic Response							
	G = 1		1300		kHz		
Small Signal 2dD Dandwidth	G = 10		230		kHz		
Small Signal –30B Bandwidth	G = 100		28		kHz		
	G = 1000		2.8		kHz		
Slew Pate	G = 1, 10V step		1.6		V/µs		
	G = 100, 10V step		0.5		V/µs		
Settling Time to 0.01% 10V Step	G = 1		75		μs		
	G = 100		200		μs		
Noise		í	í	í			
Voltage Noise 1kHz ⁽⁴⁾	Input, Voltage Noise, e _{ni}		14		nV/√Hz		
	Output, Voltage Noise, e _{no}		70		nV/√Hz		
RTI, 0.1Hz to 10Hz	G = 1		0.55		μV _{PP}		
	G = 100		0.38		μV _{PP}		
Current Noise	f = 1kHz		350		fA/√Hz		
	0.1Hz to 10Hz		10		рА _{РР}		

High Performance, Low Power Instrumentation Amplifier

Parameter	Conditions	Min	Тур	Мах	Units			
Reference Input								
R _{IN}			40		kΩ			
Voltage Range		-Vs		+Vs	V			
Reference Gain to Output			1.2	27	μV/V			
Power Supply								
Operating Range ⁽⁵⁾		±2		±19	V			
Quiescent Current	$V_{\rm S} = \pm 2V$ to $\pm 19V$		1.56	1.8	mA			
Overtemperature				2	mA			
Temperature Range								
For Specified Performance		-55		+125	°C			

Note 1: Does not include effects of external resistor R_G .

Note 2: Total RTI Error = V_{OSI} + V_{OSO} / G

Note 3: One input grounded. G = 1.

Note 4: Total RTI Noise= $\sqrt{e^2 ni + (e_{no} / G)^2}$

Note 5: This is defined as the same supply range that is used to specify PSR.

6. TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = 25^{\circ}C$, $V_S = \pm 15V$, $R_L = 2k\Omega$, unless otherwise noted.

Figure 2. Input Offset Voltage vs. Common Mode Voltage

Figure 4. Input Bias Current vs. Common Mode Voltage (25°C)

Figure 6. Gain vs. Temperature

Figure 3. Input Offset Voltage vs. Temperature

Figure 5. Input Bias Current vs. Common Mode Voltage (125°C)

Figure 7. Gain vs. Frequency

V_{IN} V_{OUT} V_{OUT} V_{OUT} 50µs/DIV (G = 1)

Figure 8. Large Signal Response (G = 1)

Figure 10. Large Signal Response (G = 100)

Figure 12. Input Offset Voltage Noise Density

Figure 14. Positive PSR vs. Frequency

AD620SQ-CN/883B

Figure 11. Large Signal Response (G = 1000)

Figure 13. Input Bias Current Noise Density

Figure 15. Negative PSR vs. Frequency

Figure 16. CMRR vs. Frequency

Figure 18. Warm-Up Time

Figure 20. VoL vs. Sink Current

Figure 17. CMRR vs. Temperature

Figure 19. VOH vs. Source Current

High Performance, Low Power Instrumentation Amplifier

7. DETAILED EXPLANATION

7.1 OUTLINEexplanation

The AD620SQ-CN/883B is a monolithic instrumentation amplifier based on a modification of the classic three op amp approach. Absolute value trimming allows the user to program gain *accurately* with only one resistor. Monolithic construction and laser wafer trimming allow the tight matching and tracking of circuit components, thus ensuring the high level of performance inherent in this circuit.

The internal gain resistors, R1 and R2, are trimmed to an absolute value of 24.7 k Ω , allowing the gain to be programmed accurately with a single external resistor.

$$G = \frac{49.4k\Omega}{R_G} + 1$$
$$R_G = \frac{49.4k\Omega}{G - 1}$$

As a single-ended output from the reference REF pin, the REF pin can be connected to ground or a low-resistance source.

7.2 BLOCK DIAGRAM OF FUNCTIONAL MODULES

Figure 21. Block Diagram of Functional Modules

7.3 CHARACTERISTIC DESCRIPTION

7.3.1 Gain Selection

The AD620SQ-CN/883B gain is resistor-programmed by R_G, or more precisely, by whatever impedance appears between Pins 1 and 8. The AD620SQ-CN/883B is designed to offer accurate gains using 0.1% to 1% resistors. Table 7 shows required values of R_G for various gains. Note that for G = 1, the R_G pins are unconnected (R_G = ∞). For any arbitrary gain, R_G can be calculated by using the formula:

$$R_{G} = \frac{49.4k\Omega}{G-1}$$

To minimize gain error, avoid high parasitic resistance in series with R_G; to minimize gain drift, R_G should have a low TC —less than 10 ppm/°C—for the best performance.

1% Std Table Value of $R_g(\Omega)$	Calculated Gain	0.1% Std Table Value of $R_g(\Omega$)	Calculated Gain
49.9k	1.990	49.3k	2.002
12.4k	4.984	12.4k	4.984
5.49k	9.998	5.49k	9.998
2.61k	19.93	2.61k	19.93
1.00k	50.40	1.01k	49.91
499	100.0	499	100.0
249	199.4	249	199.4
100	495.0	98.8	501.0
49.9	991.0	49.3	1,003.0

Table 7. Gain Resistor Selection

7.3.2 INPUT AND OUTPUT OFFSET VOLTAGE

The low errors of the AD620SQ-CN/883B are attributed to two sources, input and output errors. The output error is divided by G when referred to the input. In practice, the input errors dominate at high gains, and the output errors dominate at lowgains. The total *Vos* for a given gain is calculated as:

Total Error RTI = input error + (output error / G)

Total Error RTO = (input error × G) + output error

7.3.3 REFERENCE TERMINAL

The reference terminal potential defines the zero output voltage and is especially useful when the load does not share a precise ground with the rest of the system. It provides a direct means of injecting a precise offset to the output, with an allowable range of 2 V within the supply voltages. Parasitic resistance should be kept to a minimum for optimum CMR.

7.3.4 INPUT PROTECTION

For input voltages beyond the supplies, a protection resistor should be placed in series with each input to limit the current to 10 mA. These can be the same resistors as those used in the RFI filter. High values of resistance can impact the noise and AC CMRR performance of the system. Low leakage diodes (such as the BAV199) can be placed at the inputs to reduce the required protection resistance.

Figure 22. Diode input protection

7.3.5 RF INTERFERENCE

All instrumentation amplifiers rectify small out of band signals. The disturbance may appear as a small dc voltage offset. High frequency signals can be filtered with a low pass R-C network placed at the input of the instrumentation amplifier. Figure 23 demonstrates such a configuration. The filter limits the input signal according to the following relationship:

FilterFreq_{DIFF} =
$$\frac{1}{2\pi R(2C_D + C_C)}$$

FilterFreq_{CM} = $\frac{1}{2\pi RC_C}$

where $C_D \ge 10C_C$.

 C_D affects the difference signal. C_C affects the common-mode signal. Any mismatch in $R \times C_C$ degrades the AD620SQ-CN/883B CMRR. To avoid inadvertently reducing CMRR-bandwidth performance, make sure that C_C is at least one magnitude smaller than C_D . The effect of mismatched C_C is reduced with a larger $C_D:C_C$ ratio.

Figure 23. RF Interference Protection

High Performance, Low Power Instrumentation Amplifier

7.3.6 COMMON-MODE REJECTION

Instrumentation amplifiers, such as the AD620SQ-CN/883B, offer high CMR, which is a measure of the change in output voltage when both inputs are changed by equal amounts. These specifications are usually given for a full-range input voltage change and a specified source imbalance.

For optimal CMR, the reference terminal should be tied to a low impedance point, and differences in capacitance and resistance should be kept to a minimum between the two inputs. In many applications, shielded cables are used to minimize noise; for best CMR over frequency, the shield should be properly driven. Figure 24 and Figure 25 show active data guards that are configured to improve ac common-mode rejections by "bootstrapping" the capacitances of input cable shields, thus minimizing the capacitance mismatch between the inputs.

Figure 24. Differential Input Driver

Figure 25. Common-Mode input Driver

7.3.7 GROUND RETURNS FOR INPUT BIAS CURRENTS

Input bias currents are those currents necessary to bias the input transistors of an amplifier. There must be a direct return path for these currents. Therefore, when amplifying "floating" input sources, such as transformers or ac-coupled sources, there must be a dc path from each input to ground, as shown in Figure 26, Figure 27, and Figure 28.

Figure 26. Ground Returns for Bias Currents with Transformer-Coupled Inputs

Figure 27. Ground Returns for Bias Currents with Thermocouple Inputs

Figure 28. Ground Returns for Bias Currents with AC-Coupled Inputs

High Performance, Low Power Instrumentation Amplifier

8. PACKAGE INFORMATION

SOIC-8 Package

Figure 29. Package View

Table 8 provides detailed information about the dimensions.

Table 8. Dimensions

Symbol	Dimensions i	n Millimeters	Dimensions in Inches		
Symbol	Min	Мах	Min	Мах	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
e	e 1.270 (BSC)		0.050	(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

High Performance, Low Power Instrumentation Amplifier

NOTICE

The information presented in this document is for reference only. Involving product optimization and productivity improvement, ChipNobo reserves the right to adjust product indicators and upgrade some technical parameters. ChipNobo is entitled to be exempted from liability for any delay or non-delivery of the information disclosure process that occurs.

本文件中提供的信息仅供参考。涉及产品优化和生产效率改善,ChipNobo 有权调整产品指标和部分技术参数的升级,所出现信息披露过程存在延后或 者不能送达的情形,ChipNobo 有获免责权。

The product listed herein is designed to be used with residential and commercial equipment, and do not support sensitive items and specialized equipment in areas where sanctions do exist. ChipNobo Co., Ltd or anyone on its behalf, assumes no responsibility or liability for any damages resulting from improper use.

此处列出的产品旨在民用和商业设备上使用,不支持确有制裁地区的敏感项目和特殊设备,ChipNobo有限公司或其代表,对因不当使用而造成的任何 损害不承担任何责任。

For additional information, please visit our website https://www.chipnobo.com/en or consult your nearest Chipnobo sales office for further assistance.

欲了解更多信息,请访问我们的网站 https://www.chipnobo.com/en,或咨询离您最近的 Chipnobo 销售办事处以获得进一步帮助。