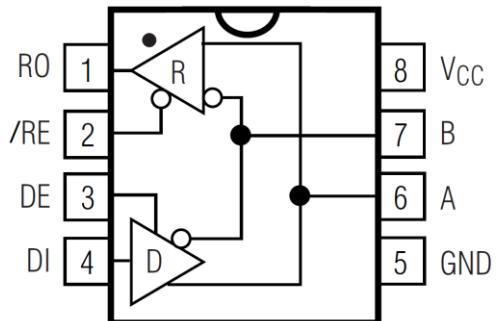


General Description


The CN485 is a half-duplex RS-485 transceiver with $\pm 15kV$ IEC 61000-4-2 contact ESD protection. This device contains one driver and one receiver. The CN485 includes fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be logic high even if all transmitters on a terminated bus are disabled.

The CN485 supports hot plug function. During power on, the driver and receiver are turned off to avoid conflict on the bus when hot-plugging. The device has a 1 unit load receiver input impedance that allows up to 32 transceivers on the bus.

Features

- Wide Supply Voltage: 3V to 5.5V
- True Fail-Safe Receiver
- Maximum Data Rate: 16Mbps
- Allow Up to 32 Transceivers on the Bus
- Hot Plug Function
- I/O Pins ESD Protection:
 $\pm 15kV$ IEC 61000-4-2, contact Discharge
- Available in SOP8 Package

Functional Block

Applications

- RS-485 Communications
- Level Translators
- Transceivers for EMI-Sensitive Applications
- Industrial Control Local Area Networks
- Energy Meter Networks
- Lighting Systems

Pin Function Description

Pin Number	Name	Function
1	RO	Receiver Output.
2	/RE	Receiver Output Enable. /RE is low to enable the Receiver; /RE is high to disable the Receiver.
3	DE	Driver Output Enable. DE is high to enable the Driver; DE is low to disable the Driver.
4	DI	Driver Input
5	GND	Ground.
6	A	Non-inverting Receiver Input and Non-inverting Driver Output.
7	B	Inverting Receiver Input and Inverting Driver Output.
8	V _{cc}	Power Supply.

Function Table (Transmitting)

Inputs			Outputs	
/RE	DE	DI	A	B
X	1	1	1	0
X	1	0	0	1
0	0	X	High-Z	High-Z
1	0	X	Shutdown (High-Z)	

Function Table (Receiving)

Inputs			Outputs
/RE	DE	A-B	RO
0	X	>-10mV	1
0	X	<-200mV	0
0	X	Open/shorted	1
1	1	X	High-Z
1	0	X	Shutdown (High-Z)

Absolute Maximum Ratings

Parameter	Symbol	Rating	Units
Power Supply	V _{CC}	+7	V
Control Input Voltage	/RE, DE	-0.3 to V _{CC} +0.3	V
Transmitter Input Voltage	DI	-0.3 to V _{CC} +0.3	V
Transmitter Output Voltage	A, B	±13	V
Receiver Input Voltage	A, B	±13	V
Receiver Output Voltage	RO	-0.3 to V _{CC} +0.3	V
Operating Temperature		-40 to +125	°C

DC Electrical Characteristics

(Test Conditions: V_{CC}=+5V, T_A=-40°C ~ +125°C, unless otherwise noted.)

Parameter	Symbol	conditions	MIN	TYP	MAX	UNITS
Driver						
Differential Driver Output(no load)	V _{OD1}	Figure 1			V _{CC}	V
Differential Driver Output	V _{OD2}	V _{CC} =5V Figure 1, R=27Ω	2.7	3.4		V
		V _{CC} =3V Figure 1, R=27Ω	1.5	1.8		
Change in Magnitude of Differential Output Voltage (Note 2)	ΔV _{OD}	Figure 1, R=27Ω	-0.2		0.2	V
Driver Common-mode Output Voltage	V _{OC}	Figure 1, R=27Ω		V _{CC} /2	3.0	V
Change in Magnitude of Common-Mode Voltage (Note 2)	ΔV _{OC}	Figure 1, R=27Ω	-0.2		0.2	V
Input High Voltage	V _{IH}	DE,DI,/RE	2.0			V
Input Low Voltage	V _{IL}	DE,DI,/RE			0.8	V
DI Input Hysteresis	V _{HYS}			100		mV
Input Current(A and B)	I _{IN4}	DE=GND V _{CC} =GND or 5.25V	V _{IN} =12V		800	μA
			V _{IN} =-7V	-800		
Driver Short-Circuit Output Current	I _{SD}	A Pin Short to B Pin	-250		250	mA
Receiver						

Receiver Differential Threshold Voltage	V_{TH}	$-7V \leq V_{CM} \leq 12V$	-200	-125	-10	mV	
Receiver Input Hysteresis	ΔV_{TH}			25		mV	
Receiver Output High Voltage	V_{OH}	$V_{CC}=5V, I_{O}=8mA$	4.0			V	
		$V_{CC}=3V, I_{O}=4mA$	2.45				
Receiver Output Low Voltage	V_{OL}	$V_{CC}=5V, I_{O}=8mA$			0.4	V	
		$V_{CC}=3V, I_{O}=4mA$			0.4		
Three-State Output Current at Receiver	I_{OZR}				±1	μA	
Receiver Input Resistance	R_{IN}	$-7V \leq V_{CM} \leq 12V$	12			K Ω	
Receiver Output Short-Circuit Current	I_{OSR}	$0V \leq V_{RO} \leq V_{CC}$			±100	mA	
Supply Current							
Supply Current	I_{CC}	No load , $/RE=DI=GND$ or V_{CC}	$DE=V_{CC}$		1.5	2	mA
			$DE=GND$		1.2	2	mA
Supply Current in Shutdown Mode	I_{SHDN}	$DE=GND,$ $/RE=V_{CC}, DI=V_{CC}$ or GND			2	μA	

Note 1: All currents into the device are positive. All currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.

Note 2: ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

Switching Characteristics

(Test conditions: $V_{CC}=+5V$, $T_A=-40^{\circ}C \sim +125^{\circ}C$, unless otherwise noted.)

Parameter	Symbol	Conditions	MIN	TYP	MAX	UNITS
Driver Input to Output	t_{DPLH}	Figure 3 and 5, $R_{DIFF}=54\Omega$ $C_{L1}=C_{L2}=100pF$		11	25	ns
	t_{DPHL}			16	30	
Driver Output Skew $ T_{DPLH} - T_{DPHL} $	t_{DSKEW}	Figure 3 and 5, $R_{DIFF}=54\Omega$ $C_{L1}=C_{L2}=100pF$		5		ns

Driver Rise or Fall Time	t_{DR}, t_{DF}	Figure 3 and 5, $R_{DIFF}=54\Omega$ $C_{L1}=C_{L2}=100\text{pF}$		6.5		ns
Maximum Data Rate	F_{MAX}		16			Mbps
Driver Enable to Output High	t_{DZH}	Figure 4 and 6, $C_L=100\text{pF}$ S2 Closed		25	50	ns
Driver Enable to Output Low	t_{DZL}	Figure 4 and 6, $C_L=100\text{pF}$ S1 Closed		28	50	ns
Driver Disable Time from Low	t_{DLZ}	Figure 4 and 6, $C_L=15\text{pF}$ S1 Closed		22	45	ns
Driver Disable Time from High	t_{DHZ}	Figure 4 and 6, $C_L=15\text{pF}$ S2 Closed		21	45	ns
Receiver Input to Output	t_{RPLH} t_{RPHL}	Figure 7 and 9, $ V_{ID} \geq 2.0V$; rise and fall time of $V_{ID} \leq 15\text{ns}$		45	70	ns
$ T_{RPLH} - T_{RPHL} $ Differential Receiver Skew	t_{RSKD}	Figure 7 and 9, $ V_{ID} \geq 2.0V$; rise and fall time of $V_{ID} \leq 15\text{ns}$		5		ns
Receiver Enable to Output Low	t_{RZL}	Figure 2 and 8, $C_{RL}=15\text{pF}$ S1 Closed		12	25	ns
Receiver Enable to Output High	t_{RZH}	Figure 2 and 8, $C_{RL}=15\text{pF}$ S2 Closed		8	25	ns
Receiver Disable Time from Low	t_{RLZ}	Figure 2 and 8, $C_{RL}=15\text{pF}$ S1 Closed		9	25	ns
Receiver Disable Time from High	t_{RHZ}	Figure 2 and 8, $C_{RL}=15\text{pF}$ S2 Closed		10	25	ns
Time to Shutdown	t_{SHDN}				500	ns
Driver Enable from Shutdown to Output High	$t_{DZH(SHDN)}$	Figure 4 and 6, $C_L=100\text{pF}$ S2 Closed		3	5	μs
Driver Enable from Shutdown to	$t_{DZL(SHDN)}$	Figure 4 and 6, $C_L=100\text{pF}$ S1 Closed		3	5	μs

Output Low						
Receiver Enable from Shutdown to Output High	$t_{RZH(SHDN)}$	Figure 2 and 8, $C_{RL}=15pF$ S2 Closed		3	5	μs
Receiver Enable from Shutdown to Output Low	$t_{RZL(SHDN)}$	Figure 2 and 8, $C_{RL}=15pF$ S1 Closed		3	5	μs

Test Circuits and Timing Diagrams

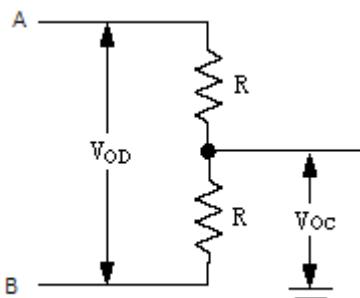


Figure 1: Driver DC Test Load

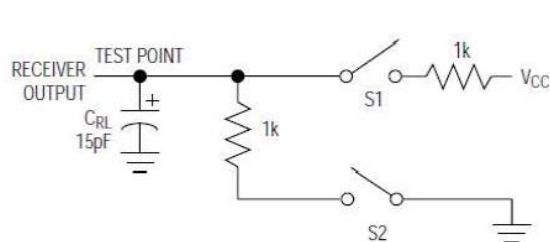


Figure 2: Receiver Enable/Disable Timing Test Load

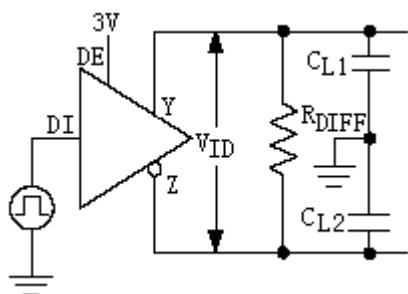


Figure 3: Driver Timing Test Circuit

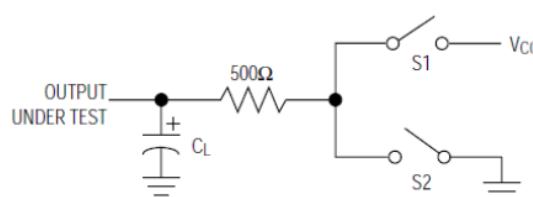


Figure 4: Driver Enable/Disable Timing Test Load

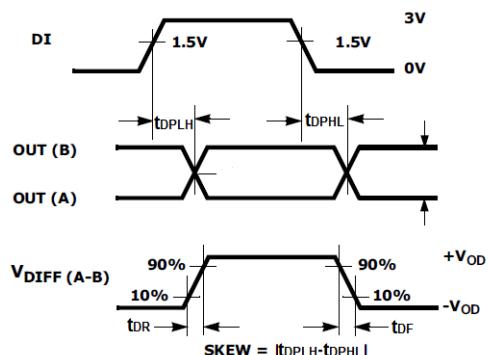


Figure 5: Driver Propagation Delays

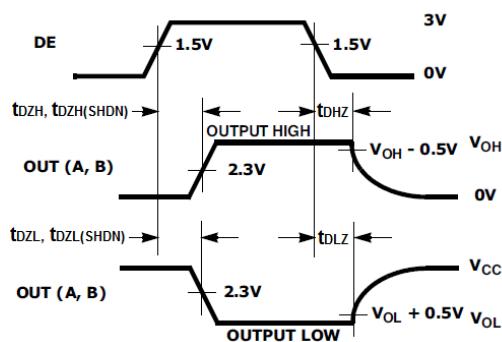


Figure 6: Driver Enable and Disable Times

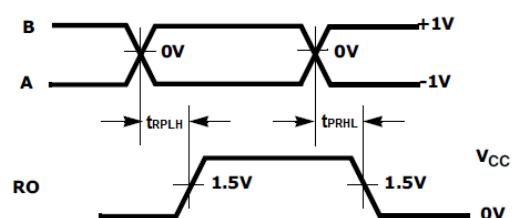


Figure 7: Receiver Propagation Delays

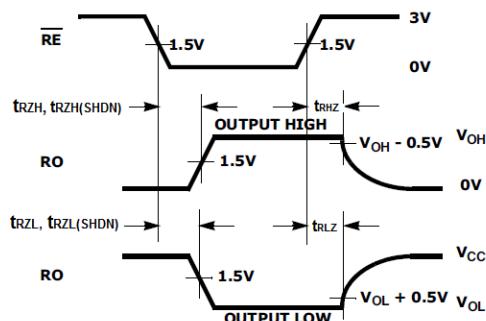


Figure 8: Receiver Enable and Disable Times

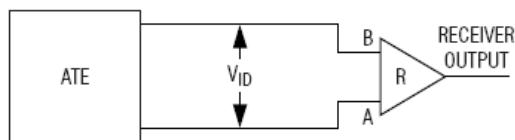


Figure 9: Receiver Propagation Delay Test Circuit

Typical Application

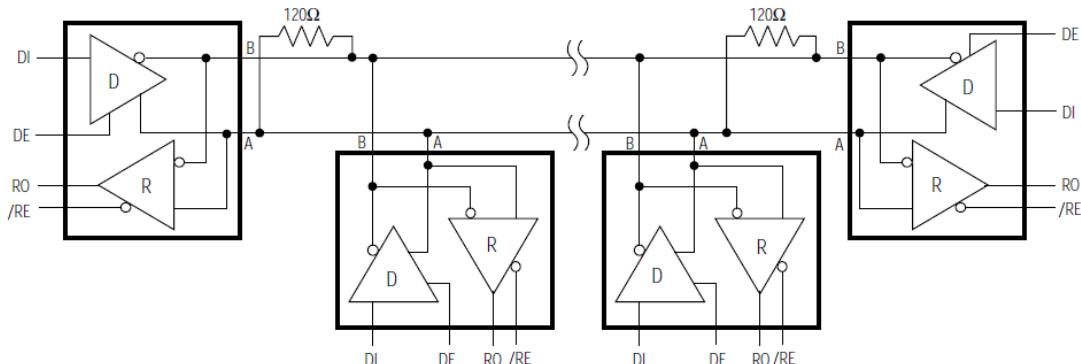
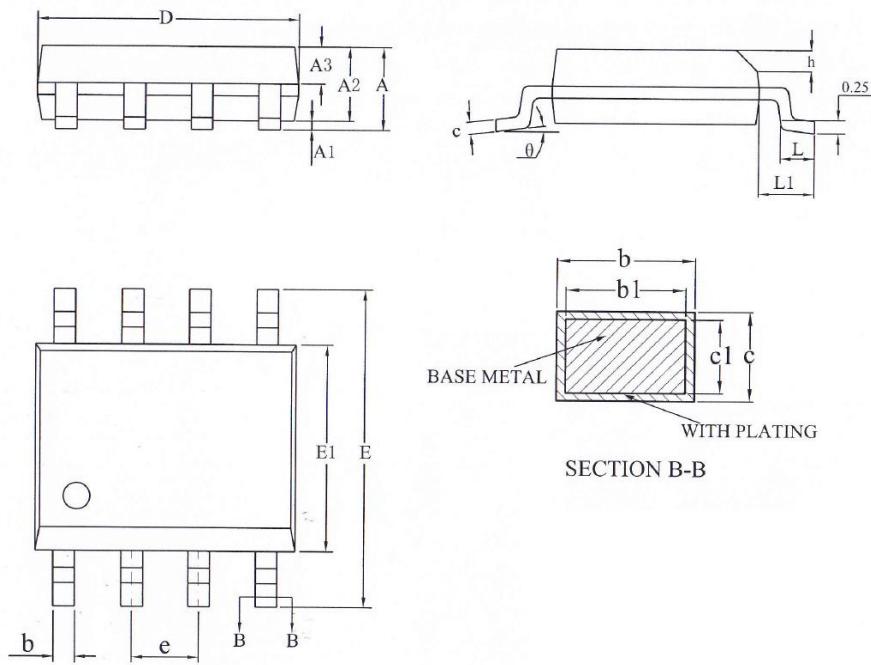



Figure 10 Typical Half-Duplex RS-485 Network

Package Information (SOP8)

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
A	—	—	1.77
A1	0.08	0.18	0.28
A2	1.20	1.40	1.60
A3	0.55	0.65	0.75
b	0.39	—	0.48
b1	0.38	0.41	0.44
c	0.20	—	0.26
c1	0.19	0.20	0.21
D	4.70	4.90	5.10
E	5.80	6.00	6.20
E1	3.70	3.90	4.10
e	1.27BSC		
h	0.25	—	0.50
L	0.50	—	0.80
L1	1.05REF		
theta	0	—	8°

NOTICE

The information presented in this document is for reference only. Involving product optimization and productivity improvement, ChipNobo reserves the right to adjust product indicators and upgrade some technical parameters. ChipNobo is entitled to be exempted from liability for any delay or non-delivery of the information disclosure process that occurs.

本文件中提供的信息仅供参考。涉及产品优化和生产效率改善, ChipNobo 有权调整产品指标和部分技术参数的升级, 所出现信息披露过程存在延后或者不能送达的情形, ChipNobo 有获免责权。

The product listed herein is designed to be used with residential and commercial equipment, and do not support sensitive items and specialized equipment in areas where sanctions do exist. ChipNobo Co., Ltd or anyone on its behalf, assumes no responsibility or liability for any damages resulting from improper use.

此处列出的产品旨在民用和商业设备上使用, 不支持确有制裁地区的敏感项目和特殊设备, ChipNobo 有限公司或其代表, 对因不当使用而造成的任何损害不承担任何责任。

For additional information, please visit our website <https://www.chipnobo.com/en> or consult your nearest Chipnobo sales office for further assistance.

欲了解更多信息, 请访问我们的网站 <https://www.chipnobo.com/en>, 或咨询离您最近的 Chipnobo 销售办事处以获得进一步帮助。